\(\int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx\) [678]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 112 \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\frac {x \sqrt {c+d x^2}}{2 b}-\frac {\sqrt {a} \sqrt {b c-a d} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b^2}+\frac {(b c-2 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^2 \sqrt {d}} \]

[Out]

1/2*(-2*a*d+b*c)*arctanh(x*d^(1/2)/(d*x^2+c)^(1/2))/b^2/d^(1/2)-arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1
/2))*a^(1/2)*(-a*d+b*c)^(1/2)/b^2+1/2*x*(d*x^2+c)^(1/2)/b

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {489, 537, 223, 212, 385, 211} \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=-\frac {\sqrt {a} \sqrt {b c-a d} \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b^2}+\frac {(b c-2 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^2 \sqrt {d}}+\frac {x \sqrt {c+d x^2}}{2 b} \]

[In]

Int[(x^2*Sqrt[c + d*x^2])/(a + b*x^2),x]

[Out]

(x*Sqrt[c + d*x^2])/(2*b) - (Sqrt[a]*Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/b^
2 + ((b*c - 2*a*d)*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]])/(2*b^2*Sqrt[d])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 489

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(m + n*(p + q) + 1))), x] - Dist[e^n/(b*(m + n*(p +
q) + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 1) + (a*d*(m - n + 1) - n*q*(b
*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] &&
GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {x \sqrt {c+d x^2}}{2 b}-\frac {\int \frac {a c+(-b c+2 a d) x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{2 b} \\ & = \frac {x \sqrt {c+d x^2}}{2 b}+\frac {(b c-2 a d) \int \frac {1}{\sqrt {c+d x^2}} \, dx}{2 b^2}-\frac {(a (b c-a d)) \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{b^2} \\ & = \frac {x \sqrt {c+d x^2}}{2 b}+\frac {(b c-2 a d) \text {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{2 b^2}-\frac {(a (b c-a d)) \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b^2} \\ & = \frac {x \sqrt {c+d x^2}}{2 b}-\frac {\sqrt {a} \sqrt {b c-a d} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b^2}+\frac {(b c-2 a d) \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^2 \sqrt {d}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(354\) vs. \(2(112)=224\).

Time = 1.43 (sec) , antiderivative size = 354, normalized size of antiderivative = 3.16 \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\frac {b x \sqrt {c+d x^2}+\frac {2 \left (-b c+a d+\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) \sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} \arctan \left (\frac {\sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (\sqrt {c}-\sqrt {c+d x^2}\right )}\right )}{\sqrt {a} d}+\frac {2 \sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} \left (b c-a d+\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) \arctan \left (\frac {\sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (-\sqrt {c}+\sqrt {c+d x^2}\right )}\right )}{\sqrt {a} d}+\frac {2 (b c-2 a d) \text {arctanh}\left (\frac {\sqrt {d} x}{-\sqrt {c}+\sqrt {c+d x^2}}\right )}{\sqrt {d}}}{2 b^2} \]

[In]

Integrate[(x^2*Sqrt[c + d*x^2])/(a + b*x^2),x]

[Out]

(b*x*Sqrt[c + d*x^2] + (2*(-(b*c) + a*d + Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d])*Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c
]*Sqrt[b*c - a*d]]*ArcTan[(Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(Sqrt[c] - Sqrt[c
 + d*x^2]))])/(Sqrt[a]*d) + (2*Sqrt[2*b*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*(b*c - a*d + Sqrt[b]*Sqrt
[c]*Sqrt[b*c - a*d])*ArcTan[(Sqrt[2*b*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(-Sqrt[c] + Sqr
t[c + d*x^2]))])/(Sqrt[a]*d) + (2*(b*c - 2*a*d)*ArcTanh[(Sqrt[d]*x)/(-Sqrt[c] + Sqrt[c + d*x^2])])/Sqrt[d])/(2
*b^2)

Maple [A] (verified)

Time = 3.01 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.09

method result size
pseudoelliptic \(-\frac {\left (-d^{\frac {3}{2}} a^{2}+\sqrt {d}\, a b c \right ) \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right )+\sqrt {\left (a d -b c \right ) a}\, \left (\left (a d -\frac {b c}{2}\right ) \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}}{x \sqrt {d}}\right )-\frac {\sqrt {d \,x^{2}+c}\, b x \sqrt {d}}{2}\right )}{\sqrt {\left (a d -b c \right ) a}\, \sqrt {d}\, b^{2}}\) \(122\)
risch \(\frac {x \sqrt {d \,x^{2}+c}}{2 b}-\frac {\frac {\left (2 a d -b c \right ) \ln \left (x \sqrt {d}+\sqrt {d \,x^{2}+c}\right )}{b \sqrt {d}}-\frac {a \left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}+\frac {a \left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}}{2 b}\) \(382\)
default \(\frac {\frac {x \sqrt {d \,x^{2}+c}}{2}+\frac {c \ln \left (x \sqrt {d}+\sqrt {d \,x^{2}+c}\right )}{2 \sqrt {d}}}{b}-\frac {a \left (\sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}+\frac {\sqrt {d}\, \sqrt {-a b}\, \ln \left (\frac {\frac {d \sqrt {-a b}}{b}+d \left (x -\frac {\sqrt {-a b}}{b}\right )}{\sqrt {d}}+\sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}\right )}{b}+\frac {\left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{b \sqrt {-\frac {a d -b c}{b}}}\right )}{2 \sqrt {-a b}\, b}+\frac {a \left (\sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}-\frac {\sqrt {d}\, \sqrt {-a b}\, \ln \left (\frac {-\frac {d \sqrt {-a b}}{b}+d \left (x +\frac {\sqrt {-a b}}{b}\right )}{\sqrt {d}}+\sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}\right )}{b}+\frac {\left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{b \sqrt {-\frac {a d -b c}{b}}}\right )}{2 \sqrt {-a b}\, b}\) \(700\)

[In]

int(x^2*(d*x^2+c)^(1/2)/(b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

-((-d^(3/2)*a^2+d^(1/2)*a*b*c)*arctanh((d*x^2+c)^(1/2)/x*a/((a*d-b*c)*a)^(1/2))+((a*d-b*c)*a)^(1/2)*((a*d-1/2*
b*c)*arctanh((d*x^2+c)^(1/2)/x/d^(1/2))-1/2*(d*x^2+c)^(1/2)*b*x*d^(1/2)))/((a*d-b*c)*a)^(1/2)/d^(1/2)/b^2

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 690, normalized size of antiderivative = 6.16 \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\left [\frac {2 \, \sqrt {d x^{2} + c} b d x - {\left (b c - 2 \, a d\right )} \sqrt {d} \log \left (-2 \, d x^{2} + 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) + \sqrt {-a b c + a^{2} d} d \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt {-a b c + a^{2} d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b^{2} d}, \frac {2 \, \sqrt {d x^{2} + c} b d x - 2 \, {\left (b c - 2 \, a d\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) + \sqrt {-a b c + a^{2} d} d \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt {-a b c + a^{2} d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b^{2} d}, \frac {2 \, \sqrt {d x^{2} + c} b d x - 2 \, \sqrt {a b c - a^{2} d} d \arctan \left (\frac {\sqrt {a b c - a^{2} d} {\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right ) - {\left (b c - 2 \, a d\right )} \sqrt {d} \log \left (-2 \, d x^{2} + 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right )}{4 \, b^{2} d}, \frac {\sqrt {d x^{2} + c} b d x - \sqrt {a b c - a^{2} d} d \arctan \left (\frac {\sqrt {a b c - a^{2} d} {\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right ) - {\left (b c - 2 \, a d\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right )}{2 \, b^{2} d}\right ] \]

[In]

integrate(x^2*(d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(d*x^2 + c)*b*d*x - (b*c - 2*a*d)*sqrt(d)*log(-2*d*x^2 + 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) + sqrt(-
a*b*c + a^2*d)*d*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b*
c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c + a^2*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/(b^2*d), 1/4*(2*sq
rt(d*x^2 + c)*b*d*x - 2*(b*c - 2*a*d)*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) + sqrt(-a*b*c + a^2*d)*d*log
(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b*c - 2*a*d)*x^3 - a*c
*x)*sqrt(-a*b*c + a^2*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/(b^2*d), 1/4*(2*sqrt(d*x^2 + c)*b*d*x
- 2*sqrt(a*b*c - a^2*d)*d*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d -
 a^2*d^2)*x^3 + (a*b*c^2 - a^2*c*d)*x)) - (b*c - 2*a*d)*sqrt(d)*log(-2*d*x^2 + 2*sqrt(d*x^2 + c)*sqrt(d)*x - c
))/(b^2*d), 1/2*(sqrt(d*x^2 + c)*b*d*x - sqrt(a*b*c - a^2*d)*d*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x
^2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d - a^2*d^2)*x^3 + (a*b*c^2 - a^2*c*d)*x)) - (b*c - 2*a*d)*sqrt(-d)*arctan(s
qrt(-d)*x/sqrt(d*x^2 + c)))/(b^2*d)]

Sympy [F]

\[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\int \frac {x^{2} \sqrt {c + d x^{2}}}{a + b x^{2}}\, dx \]

[In]

integrate(x**2*(d*x**2+c)**(1/2)/(b*x**2+a),x)

[Out]

Integral(x**2*sqrt(c + d*x**2)/(a + b*x**2), x)

Maxima [F]

\[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\int { \frac {\sqrt {d x^{2} + c} x^{2}}{b x^{2} + a} \,d x } \]

[In]

integrate(x^2*(d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)*x^2/(b*x^2 + a), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^2*(d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \sqrt {c+d x^2}}{a+b x^2} \, dx=\int \frac {x^2\,\sqrt {d\,x^2+c}}{b\,x^2+a} \,d x \]

[In]

int((x^2*(c + d*x^2)^(1/2))/(a + b*x^2),x)

[Out]

int((x^2*(c + d*x^2)^(1/2))/(a + b*x^2), x)